翻訳と辞書
Words near each other
・ Topolno
・ Topolno Małe
・ Topolno Wielkie
・ Topolná
・ Topolná transmitter
・ Topolobampo
・ Topolog
・ Topolog River (Danube)
・ Topolog River (Olt)
・ Topolog Viaduct
・ Topolog, Tulcea
・ Topologel River
・ Topological abelian group
・ Topological algebra
・ Topological Boolean algebra
Topological category
・ Topological censorship
・ Topological combinatorics
・ Topological complexity
・ Topological conjugacy
・ Topological data analysis
・ Topological defect
・ Topological degeneracy
・ Topological degree theory
・ Topological derivative
・ Topological divisor of zero
・ Topological drugs
・ Topological dynamics
・ Topological entropy
・ Topological entropy in physics


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Topological category : ウィキペディア英語版
Topological category
In category theory, a discipline in mathematics, the notion of topological category has a number of different, inequivalent definitions.
In one approach, a topological category is a category that is enriched over the category of compactly generated Hausdorff spaces. They can be used as a foundation for higher category theory, where they can play the role of (∞,1)-categories. An important example of a topological category in this sense is given by the category of CW complexes, where each set Hom(''X'',''Y'') of continuous maps from ''X'' to ''Y'' is equipped with the compact-open topology.
In another approach, a topological category is defined as a category C along with a forgetful functor T: C \to \mathbf that maps to the category of sets and has the following three properties:
* C admits initial (or weak) structures with respect to T
* Constant functions in \mathbf lift to C-morphisms
* Fibers T^ x, x \in \mathbf are small (they are sets and not proper classes).
An example of a topological category in this sense is the categories of all topological spaces with continuous maps, where one uses the standard forgetful functor.
==See also==

*Infinity category
*Simplicial category

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Topological category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.